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A B S T R A C T   

A methodology for the top-down design of ceramic materials composed of two or more phases has been 
developed. It is demonstrated on the example of the well-known alumina/zirconia (AZ) material system. Core of 
the method is an automated simulation chain based on representative volume elements for generating a database 
of microstructure-property relations. The database emanating from this simulation chain was used to train 
machine learning models for enabling fast predictions of material microstructure according to preset material 
properties. A gradient boosting algorithm provided reliable and fast calculations for the exemplary chosen 
thermal and mechanical properties of the AZ material system. This enables reverse identification of selected 
microstructural parameters needed to obtain a specific value of a material property of interest, or briefly: top- 
down ceramic material design.   

1. Introduction 

In recent years, materials research and development has been 
advanced considerably by the implementation of digital methods on 
various length scales and for many steps along the value chain. This 
statement holds, in particular, for metals and alloys, where the concept 
of integrated computational materials engineering (ICME) meanwhile 
has found its way in the industrial application [1,2]. In this field, many 
software tools were developed and are being offered now for simulation 
of phenomena from crystal growth on atomic scales to high-cycle fatigue 
of large components under typical loads during application [3]. 
Automatized coupling of modeling and experiments on different length 
scales yields, e.g., correlations between microstructural parameters and 
application behavior, which can be used to identify the production 
conditions for optimum performance of the parts to be produced [4]. 
Machine learning algorithms like neural networks provide a powerful 
toolbox to find these downward correlations in the sense of top-down 
design [5–7]. In spite of the scientific progress in this field, however, 
mostly only individual elements of ICME are utilized for practical 
development projects due to the still existing challenges in computation 
and model verification. 

Digitalization of material development in the field of ceramics has 
not yet reached a comparably advanced level. Ceramic materials require 
different approaches for processing and property simulation than 
metals, precluding in many cases the direct use of models established for 

metallic materials. Besides vastly different preparation procedures, a 
crucial difference is the brittleness of ceramics. While in metals plastic 
deformation can relax local thermal stresses from the production pro-
cess, the stresses in the microstructure after cooling down a material 
from sinter temperature to room temperature are usually a critical issue 
for the strength of the material. Researchers worldwide have meanwhile 
successfully modeled almost all relevant steps of ceramic manufacturing 
individually by various simulation methods (e.g., spray drying [8], 
powder compaction [9]; drying [10], debinding [11] and sintering [12, 
13] of ceramic components) and can predict material properties based 
on microstructure models [14,15]. However, a comprehensive approach 
linking all these techniques together in the sense of an integrated 
computational ceramics engineering (ICCE) is missing up to date. 

As was pointed out in the review on ICME by Panchal et al. [16], 
top-down material design must explicitly include the material structure 
in a multiscale approach, which can be linked to the processing condi-
tions forming these structures as well as to the application properties 
resulting from structural details of the material. In that sense, simplified 
material concepts like the well-known Voigt-Reuss-Hill average [17] or 
Hashin-Shtrikman bounds [18,19] are not sufficient to enable inverse 
material design. Also concepts regarding the microstructure more 
explicitly like Ondracek’s model [20] are usually not suited for 
describing composites with high contrast between the phases, thin 
layers at grain interfaces or percolation phenomena. In general, 
advanced questions like the structure-dependent distribution of thermal 
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stresses cannot be answered by any of these models but require explicit 
structure-related simulations. 

In this work, we describe the development and first application of an 
automated simulation chain for studying microstructure-property re-
lations of ceramic materials, with the potential to provide the above- 
described functionality. The components of this simulation methodol-
ogy, which is based on representative volume elements (RVE) have been 
developed and validated against experimental results on mechanical, 
thermal and electrical properties for many different ceramic composites 
in the last years [21–23]. The simulation chain is used to generate a 
database of mechanical and thermal material properties for the example 
of the alumina/zirconia material system (including pores as third 
phase). The use of machine learning tools for the reverse problem, i.e., 
identification of microstructural parameters required to achieve a preset 
material property is demonstrated. 

2. Materials and methods 

2.1. Key elements for simulation of material properties 

Our concept for predicting the material properties of ceramics 
composed of more than one phase relies on the broadly accepted 
approach of representative volume elements (RVE) with periodic 
boundary conditions. Material properties of the composite are calcu-
lated by help of finite element analysis in dependence of the micro-
structural characteristics, using material properties of the pure phases as 
input. The components of the simulation chain have been described in 

detail in previous publications [21–23]; a brief overview is given in the 
following. 

According to a recent review by Bargmann et al. [24], the generation 
of 3D RVE can be classified into three categories: (i) reconstruction from 
experimental characterization of real samples, (ii) methods intending to 
simulate the physical processes of microstructure formation and (iii) 
purely geometrical constructions with focus on mimicking the 
morphology. An In-house software (called GeoVal) for RVE generation 
combines elements of categories (ii) and (iii) to allow for a material 
design on the one hand, which on the other hand accounts for the 
ceramic material-specific physical processes such as forming or sintering 
in a realistic way. In that sense, microstructure generation always starts 
out geometrically with introducing spheres at random positions within 
the RVE. Spheres of several different phases with individually different 
average sizes and size distributions can be introduced. These spheres are 
then redistributed according to hard sphere repulsion in order to 
simulate the particle rearrangement during forming processes like spray 
drying or slip casting. Next, the spheres are converted into the required 
particle shapes for each phase, for instance into prisms, platonic solids or 
Voronoi-polyhedra. Irregularity of particle shapes, as they are intro-
duced, e.g., by milling, are considered by cutting particles at random 
planes. Particle sizes are then adapted to match a preset volume fraction 
of the respective phase by growth or shrinkage operations followed by 
further rearrangement including reorientation to minimize particle 
overlap. 

At this point the geometrical objects (typically 50 to 250) are con-
verted into a voxel structure, enabling voxel-based stochastic procedures 

Fig. 1. (a) example for an RVE composed of Voronoi polyhedra for a two-phase ceramic composite; (b) meshed RVE used as input for FE simulations; (c) FE result for 
temperature distribution in a single phase of the composite yielding thermal conductivity; (d) illustration of homogenization technique by a large-scale grid 
composed of small RVE with stochastic orientation. 
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for generating for example pores at corners or edges. Also, interphases at 
interfaces as they can result from liquid phase sintering can be intro-
duced. Typical RVE comprise 323, 643 or 1283 voxels, depending on the 
number of particles and type of microstructure: while smooth structures 
like Voronoi-polyhedra can often be represented with sufficient preci-
sion already with 323 voxels, materials composed of particles with high 
aspect ratio, splintery shapes or simply broad size distribution require 
larger RVE. The software allows for quantitative measures of structural 
properties of the voxel structure as they are described in Ref. [25]. E.g., 
chord length analyses of the microstructure generated in the RVE are 
used for quantitative comparison with real, experimentally determined 
microstructures. 

Fig. 1(a) shows an example of an RVE composed of 120 particles 
(Voronoi-polyhedra) in voxel representation (1283). Different particle 
sizes of the initial particles were considered using the radical plane 
method [26]. Phase 1 (plotted in shades of green) comprises 32%, phase 
2 (plotted in yellow to orange colors) about 67% of the RVE volume; the 
remainder of about 1% was attributed to small pores at particle corners. 

The second step of the simulation chain is the creation of a suitable 
mesh for finite element simulation, which represents the shapes and 
volumes of all particles and pores correctly but avoids the artifacts and 
high computational load to be expected from a mesh generated directly 
on the voxel structure. For that purpose, another in-house algorithm 
(VoxSM) converts the voxel mesh in several smoothing and simplifica-
tion steps into a triangular surface mesh keeping the original informa-
tion about particles, phases and their volume fraction [21]. The number 
of nodes is reduced from about 300,000 (in case of a 643 RVE) to roughly 
20,000 to 40,000 during mesh conversion (cf. Fig. 1(b)). This surface 
mesh is finally used to generate a volume mesh for the FE software 
ANSYS, with the option to include explicitly a thin layer of elements at 
grain boundaries, which is required for instance for simulations of 
electrical properties [21]. 

Next, the volume mesh is used for calculating macroscopic material 
properties of the composite for the specific RVE microstructure by FE 
analyses. By applying loads in different directions like a small amount of 
mechanical strain, electrical potential or temperature differences in the 
FE model (illustrated in Fig. 1(c)), the stiffness matrix as well as 

Fig. 2. Framework for automated microstructure-property simulations.  

Table 1 
Summary of average computation times (in seconds) of each step of the simu-
lation chain for RVEs of different resolution. The data shown represents the 
mean and standard deviations of the measured times for several hundreds of 
structures.  

RVE 
dimension 
(voxels) 

Voxel 
structure 
generation 

RVE 
meshing 

Simulation and Postprocessing 
(PyMAPDL) 

Elasticity Thermal 
conductivity 

Thermal 
expansion 

32 28 ± 25 608 ±
114 

227 ± 30 37 ± 6 67 ± 35 

64 204 ± 128 3623 ±
834 

260 ± 30 51 ± 5 71 ± 7  

Fig. 3. SEM image showing the microstructure of a ZA ceramic; dark gray: 
alumina; light gray: zirconia; black: pores. 
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electrical impedance and thermal conductivity tensors of the RVE are 
obtained. Coefficients of thermal expansion can also be derived easily 
from evaluating the RVE size change after a small temperature change. A 
further evaluation of this latter FE result yields the distribution of 
thermal stresses in the microstructure as they occur during the cooling 
down after sintering for most ceramic composites. These stress distri-
butions can be interpreted as a relative measure of intrinsic failure 
probability of a material [14]. 

Due to the periodic boundary conditions, this FE simulation provides 
in simple cases already a fair approach to the macroscopic properties. In 
case of isotropic materials, as is the case for many sintered ceramics, 
remaining anisotropies caused by the limited RVE size are removed by a 
final homogenization step. For that, we generate a ‘super-cell’ composed 
of, e.g., 203 voxels which are assigned the property component values 
obtained for the RVE along its principal axes, but with a stochastic 
rotation of the tensors obtained in the first step. The principle is illus-
trated in Fig. 1(d), where the different orientations of the individual RVE 
are indicated by different colors. By applying the same FE loads as 
described for the small RVEs, homogenized macroscopic properties 
emerge. 

Finally, to account for the variety of local microstructures which are 
generated by the stochastic algorithms in GeoVal, usually several initial 
RVEs with identical composition and microstructure parameters are 
created and evaluated by the described simulation chain. Previously, 
results were averaged and validated by comparison with experimental 
data from composites with identical chord length distribution. The very 
good agreement of the material properties predicted with this method-
ology has already been demonstrated for various multi-phase ceramic 
systems [21–23]. Instead of averaging results directly, we use them now 
creating a broad database to train machine learning algorithms. 

2.2. Automation of simulation chain 

To enable structure and mesh generation of a large number of RVEs, 
an application programming interface (API) has been added allowing 
external control of the in-house programs through the Python pro-
gramming language. Using this interface, numerous RVE structures with 

a variety of microstructure parameters can be generated and meshed 
automatically using scripts. Similarly, the generation of the volume 
meshes, the FE simulations and the homogenization step have also been 
fully automated. The PyMAPDL interface library [27] is used, which 
gives access to the MAPDL process from within Python. Starting from the 
surface mesh of an RVE, a Python program takes control of preparing 
and loading the simulation mesh into Ansys, setting up the necessary 
boundary conditions and running the simulations, as well as the post-
processing. The results of each simulation are stored in the widely used 
JSON format. This also includes the associated input parameters (e.g., 
descriptive parameters of the RVE structure, material data of the indi-
vidual phases and options for the simulation). This way, the entire 
process can be traced and repeated at any time. A schematic overview of 
the individual steps of the automatic simulation chain and the tools used 
in the process is given in Fig. 2. 

The computational effort for a single run of the automatic simulation 
chain depends primarily on the resolution and complexity of the voxel 
structure. Table 1 gives an impression of the processing times on a 
machine with 12 core Intel Xenon E5-2680 processor with 250 GB of 
memory. Most of the computational time is incurred in converting the 
voxel structures into the triangular surface mesh, while the time to 
generate the initial voxel structures is less significant. However, both 
voxel structure and mesh generation can run in parallel for multiple 
structures, allowing the processing of up to several hundred structures 
per day.1 

Thus, for many materials, the relevant parameter range of micro-
structure descriptors can be covered in a manageable time (typically 1–2 
weeks for several hundreds to a few thousand different RVEs). The 
resulting material properties are used to construct a comprehensive 
database of structure-property relationships. In the following section it 
will be described, how this data set can be used to train machine 
learning models with the aim of developing a predictive model for the 
properties of a material based on a given microstructure. 

Fig. 4. Distributions of various microstructure parameters for the structures in the generated RVE database.  

1 In principle, the FE simulation of the structures can also be parallelized if 
enough licenses for the ANSYS software are available. 
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2.3. Parameter identification for top-down material design 

Final goal of the work described in this paper is a top-down identi-
fication of suitable microstructural parameters for a specified material 
property. Searching for such a reverse correlation from simulation result 
to structure descriptors is a classical regression problem. Today, a va-
riety of machine learning (ML) models is available to solve such prob-
lems (see, e.g. Ref. [28], for a comprehensive overview). For the 
purposes of this work, multiple regression methods implemented in the 
freely available Python library scikit-learn [29] were investigated by 
training them to predict material properties for new, unseen structures 
using the data pairs from a structure-property database. 

In the following, the general procedure for training a regression 

model is briefly described. First, it is necessary to decide which feature 
variables should be used as input parameters in the model and which 
outputs the model should provide. 

The definition of the features can be done manually based on prior 
knowledge or can be supported by a correlation analysis to identify 
important and less important features. In our case, the feature variables 
were defined manually, focusing on easily quantifiable microstructure 
descriptors such as the volume fraction of each phase, the mean grain 
sizes and their variances. Ideally, these can be measured on real samples 
with little effort, facilitating the validation of the final model. Some 
other conceivable input parameters of the model, such as the operating 
temperature or the material data of the individual phases and their 
uncertainties, were considered constant for this work. The output pa-
rameters of the model are given by material properties of interest 
available in the structure-property database. To keep the current paper 
concise, we focus on the following mechanical and thermal properties 
implemented in the automated simulation toolchain:  

- Linear elasticity: Young’s modulus, Poisson’s ratio, shear modulus, 
bulk modulus  

- Thermal conductivity  
- Coefficient of thermal expansion  
- Thermal stresses in each phase 

With inputs and outputs of the model defined, the training can 
commence. To avoid overfitting, the total set of structure-property pairs 
is first divided into two disjoint subsets, a training set and a test set. 
Next, a specific type of model is selected for training and hyper-
parameters of the model are fixed. The training is performed, taking into 
account only the training set portion of the data. After training, the score 
of the resulting model is evaluated on the test set. If the model’s per-
formance is not satisfactory, hyperparameters of the model can be varied 
and different models can be tried. During the process of finding the best 
model and its optimal parameters, a cross-validation strategy is applied 
to prevent overfitting to the test set. 

The major advantage of the presented approach over the alternative 
route via direct FE simulation is the drastic reduction in computational 
time for property prediction. In contrast to simulation-based property 
prediction, the prediction of the ML models is practically instantaneous. 
This makes it possible to embed them into an optimization procedure 
and to quickly examine the parameter space for compositions respec-
tively microstructures with desired properties, i.e. for answering the 
reverse question. 

2.4. Brief overview of alumina/zirconia binary material system 

In order to demonstrate the capabilities of the above-described 
automated simulation chain and ML models, the well-known binary 
alumina-zirconia (AZ) material system has been chosen. AZ (or ZA) 
ceramics can be prepared at any composition between pure alumina and 
pure zirconia, and the validity of our concept of microstructure-property 
simulation on the basis of Voronoi-polyhedra has been proven previ-
ously for this material system [21]. As to the considerable differences of 
mechanical, thermal and electrical properties of alumina and zirconia, 
this material systems provides an instructive example for the effects of 
microstructural parameters such as volume fraction, relative particle 
size or porosity on macroscopic material properties. 

Fig. 3 shows a SEM image of the microstructure of a ZA ceramic with 
volume fractions of 85.2% alumina (dark gray grains), 14.2% zirconia 
(light gray grains) and a porosity of 0.6%. The mean chord lengths of the 
grains have been measured to be (0.75 ± 0.2) μm (alumina) and (0.3 ±
0.08) μm (zirconia). The pores are located at the particle corners. 

3. Results and discussion 

The microstructure-property simulation chain was applied to the AZ 

Fig. 5. Simulated elastic material properties for RVEs in the database. Each 
data point corresponds to a single structure. (a) Young’s modulus for varying 
volume fractions of ZrO2. (b) Poisson’s ratio for varying volume fractions of 
ZrO2. (c) Decrease of Young’s modulus with increasing porosity of the struc-
tures compared to non-porous composites with varying volume fractions of the 
ZrO2 phase (shown in black). 
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material system. A script was used to generate artificial RVEs mimicking 
the microstructure of real ceramics, as shown in the SEM image in Fig. 3. 
Depending on the input parameters of the script, structures with 

different volume fractions of the two phases and chord length distri-
butions of their particles (e.g., monodisperse, polydisperse, multimodal) 
are generated. In order to cover the full range of volume fractions and a 
reasonably broad range of particle sizes and size distributions, an al-
gorithm randomly selects new parameters for each RVE as follows:  

1. Pick a number n in [50, 100] representing the total number of 
particles  

2. Pick a target volume fraction v1 in [0,1]  
3. Randomly split the n particles into two sets n1 and n2  
4. Define a radius (r1 and r2) for each set n1 and n2 so that the total sum 

of the sphere volumes corresponds to RVE volume 

Then, as described in chapter 2.1, a redistribution of the spheres 
using hard sphere repulsion followed by conversion to the prefinal 
structure is done by a Voronoi tessellation. As last step, various degrees 
of porosity are added to the RVE by voxel-based operations, the pores 
being represented as a third phase typically located at the corners where 
three or more particles meet. 

In this way, a database with more than 1500 RVEs of different res-
olutions (323 and 643 Voxels) was generated. The higher resolution was 
used in particular for the evaluation of stress distribution within an RVE 
due to thermal expansion. Porosity was either excluded or varied in the 
range of 0.25%–3.5%. For each generated RVE the following structural 
parameters were monitored:  

- volume fraction of each phase  
- porosity  
- average chord length for grains of each phase  
- variance of chord length for grains of each phase 

Fig. 6. Simulated material properties of the structures in the RVE database for (a) thermal conductivity and (b) coefficient of thermal expansion.  

Fig. 7. (a) Visualization of principal stresses in the RVE for a cooling by 1000 
K. (b) and (c): histograms and percentiles of volume-weighted distributions of 
principal stresses in the alumina phase (b) and zirconia phase (c). 

Table 2 
Prediction accuracy of the trained ML models for each material property. 
We list the mean and standard deviation of the score on the test set as achieved 
by different models trained using a 5-fold cross-validation. In addition, the root 
mean squared error (RMSE) on the test set is reported.  

Material property Score of training with 5- 
fold cross-validation   

Mean Standard 
deviation 

RMSE Unit 

Young’s modulus 0.999 3.2⋅10-4 1.1 GPa 
Poisson’s ratio 1.000 8.5⋅10-5 3.9⋅10- 

4  

Thermal conductivity 0.998 4.7⋅10-4 4.1⋅10- 

1 
W/(K 
m) 

Coefficient of thermal expansion 1.000 5.5⋅10-5 4.8⋅10- 

3 
ppm/K 

95-percentile of principal thermal 
stress in ZrO2 phase 

0.997 7.9⋅10-3 7.3⋅10- 

3 
MPa  
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Fig. 4 showcases the distribution of some of these statistical prop-
erties in the RVE database. 

For each RVE, FE simulations were performed to calculate the elastic 
moduli, thermal conductivity and thermal expansion. The total time 
required for RVE generation, meshing and simulation was about 320 h 
on a 12 core Intel Xenon E5-2680 machine with 250 GB of memory. For 
the simulations, material data of the constituent phases at 25 ◦C from a 
commercial material database2 were used. 

Fig. 5 depicts the predicted Young’s modulus and Poisson’s ratio, 
both for RVEs with and without pores. Without porosity, the elastic 
parameters of the RVE are fully determined by the ratio of volume 
fractions of zirconia vs. alumina. It is well known that pores have sig-
nificant influence on the elastic properties of ceramics, a fact that is 

confirmed and quantified by the simulations (cf. Fig. 5(c)). 
Likewise, simulations for the thermal conductivity and the coeffi-

cient of thermal expansion (CTE) were carried out. The results of these 
simulations for the RVEs in the database are displayed in Fig. 6. In 
contrast to the simulations of elasticity, the porosity of the structure is 
not monotonously correlated to the thermal conductivity; in particular, 
porosity has almost no effect on the thermal expansion of the material. 
This is consistent with experimental results (see, e.g., the work of Hirata 
on porous sintered alumina [30]). 

Another aspect of simulating thermal expansion is much more 
interesting: due to the different thermal expansion coefficients of the 
individual phases of the composite, any temperature change will lead to 
a distribution of thermal stresses within the microstructure. This is of 
practical relevance, because during cooling down to room temperature, 
any sintered ceramics will undergo a period of pure elastic deformation 
over a temperature interval of typically several hundred K. As a result, 
the room temperature ceramics has often quite high thermal stresses in 

Fig. 8. Comparison of the prediction accuracy of the ROM and HS vs. the trained ML model for RVEs without porosity in the test set. (a) shows the predicted Young’s 
modulus and the error of the prediction in (b). (c) shows the predictions for the CTE with the error plotted in (d). 

Fig. 9. Predictions (a) and error (b) for the thermal conductivity of RVEs in the test set according to different models. The root mean square errors are given by 
RMSEML = 0.44, RMSEOndracek = 0.70, RMSEROM = 4.15, RMSEHS = 1.98. 

2 More precisely, the data for alpha-Al2O3 (unique ID 2648) and 97 ZrO2, 3 
Y2O3 (mol%) (unique ID 666) from MPDB v9.17 (2021) by JAHM Software, Inc. 
was used. 
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the microstructure. Since particularly tensile stresses may cause crack 
initiation, it can be an important design criterion for structural ceramics 
- or whenever the strength of a material is crucial - to minimize the 
amount of local tensile stresses in the microstructure. 

The thermal expansion simulations provide this kind of information 
on the stresses in the microstructure after a temperature change. Fig. 7 
(a) shows an example of the principal stresses of a ZA-composite with 
about 64% ZrO2 after a cooling step from 1000 ◦C to room temperature 
(above 1000 ◦C plastic deformation of ZA ceramics has been observed 
[31], which is assumed to provide a stress-free state during cooling 
down to this temperature). Fig. 7(b) and (c) display histograms of the 
volume-weighted distribution of principal stresses for the individual 
phases. Compressive stresses dominate in the Al2O3 phase while tensile 
stresses are predominant in the ZrO2 phase. The same magnitude of 
stresses has been observed experimentally in AZ-ceramics [32]. Usually, 
in the special case of ZA ceramics, the phase transition (tetragonal to 
monoclinic) of zirconia, which is connected with a significant volume 
increase of the grains must be considered. In the present study it was 
assumed that this phase transition was effectively suppressed by suffi-
cient stabilization with Y2O3. 

Rather than keeping the full data set of stresses in each finite element 
of the RVE, we chose to characterize any distribution of stresses by its 
median and the 5th and 95th percentiles. The latter can be taken as a 
good indicator to compare the maximum tensile stresses of different 
distributions, which is not prone to misinterpretations of outliers due to 
numerical issues. 

All generated simulation data was used in the training of machine 
learning models to predict macroscopic material properties. For 
training, 75% of the data pairs were used while 25% were retained for 
testing. Among the regression methods available in scikit-learn, gradient 
boosting [33] provided the best overall results. In this method, an 
ensemble of weak learners (decision trees) is used to form a more 
capable predictor. 

A separate gradient boosting model was trained for each considered 
material property. All models were able to predict the associated prop-
erty of the microstructure with very good accuracy (cf. Table 2). 

For RVEs without pores, we compare the performance of our models 
to some widely used analytical models for the prediction of material 
properties of multi-phase composites. The values predicted by each 

model are compared to the values of the simulated structures in the test 
set. The deviation of the prediction from the simulated values will be 
referred to as the error of the model. 

The most commonly used rule-of-mixtures (ROM) considers the 
properties of the constituents (P[Al2O3], P[ZrO2]) and their volume 
fractions (v[Al2O3], v[ZrO2]) and computes an estimate by the 
expression 

P[comp] =P[Al2O3] ⋅ v[Al2O3] +P[ZrO2]⋅v[ZrO2]

In addition, we consider the Hashin-Shtrikman (HS) bounds [18] 
which compute lower and upper bounds on the properties of a composite 
material. Fig. 8 displays the predicted material properties of the ROM 
and of our ML model when applied to the simulated RVE structures in 
the test set (i.e., structure-property-data that was presented to the model 
during training), as well as the HS bounds. The ML model gives very 
accurate predictions of the properties of these composites. For the two 
displayed material properties with approximately linear dependence on 
the volume fraction (elasticity, coefficient of thermal expansion) the 
ROM also yields reasonable estimates but shows some discrepancies, 
especially in the intermediate range of equally distributed volume 
fractions. 

For other properties with a more nonlinear dependence of the ma-
terial’s properties on the microstructure (e.g., thermal conductivity), 
ROM no longer manages to give a good estimate and the HS bounds are 
rather conservative. Here, advanced models like Ondracek’s formulas 
[20] allow a more accurate prediction by taking into account additional 
information about the microstructure. More precisely, a stereometric 
form factor describing the shape of the grains as well as the general 
structure type (inclusion vs. interpenetration) are required as an input 
for the Ondracek model. Fig. 9 shows the error of predictions of ROM, 
HS bounds, Ondracek model and the ML model, again for structures not 
contained in the training data set. 

Both the ML model and the Ondracek model are able to predict the 
thermal conductivity of the composite with high accuracy, with the ML 
model performing slightly better. Compared to the Ondracek model, 
which requires rather abstract, descriptive information about the 
microstructure, the ML model has the added advantage of working only 
on easily quantifiable input parameters. In addition, it can give more 
diversified estimates on RVEs that differ based on their concrete 
microstructure but share the same volume fractions and grain shapes. 

So far, we considered only nonporous composites but since samples 
of RVEs with porosity were contained in the training data, the ML 
models can also make predictions for porous structures. Fig. 10 displays 
the predicted Young’s modulus for varying degrees of porosity. It can be 
observed that the prediction error is small compared to the absolute 
effect of the porosity on Young’s modulus (cf. Fig. 5(c)). 

Since the ML models can be trained on arbitrary data available from 
simulations, they can also make predictions for more complex quantities 
such as the internal stresses. Fig. 11 (a) shows the comparison of the 
95th percentile of the frozen thermal tensile stresses in the ZrO2 phase 
predicted by the model versus the results from the FE simulation. The 
ML model accurately reproduces the stresses in the structure. 

The model can even be used to quantify the influence of porosity on 
the thermal stresses. As can be seen in Fig. 11 (b), adding pores to the 
structure reduces the median value of the thermal stresses in the ZrO2 
phase. 

4. Conclusions 

Overall, the automated numerical methodology presented in this 
work appears as a very flexible and reliable tool for the prediction of 
macroscopic material properties of ceramics composed of two or more 
phases in dependence of composition and microstructural parameters 
such as average grain size, grain size distribution or porosity. The 
gradient boosting ML model could be shown to enable fast and precise 
predictions of material properties after being trained on a few hundred 

Fig. 10. Predictions of the ML model for Young’s modulus of RVEs with and 
without porosity in the test set. The color represents the error of the model’s 
predictions with a maximum deviation of 3.83 GPa and a RMSE of 1.14 GPa. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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RVEs from a database created with an automated simulation chain. 
Thus, once trained the ML model can replace the time-consuming 
explicit simulations for the purpose of top-down design of ceramic ma-
terials, where composition and optimal microstructural parameters for a 
desired material behavior have to be identified. Future work has to be 
done to link the microstructure-property simulation to processing (e.g., 
sintering [34]) models. Final goal is a comprehensive digital ICME 
concept ‘from powder to product’. 

As the focus of this work was the development and test of the 
computational concept for fully automated microstructure-property 
simulation, the well-known alumina-zirconia system and several 
straightforward material properties (elasticity, thermal conductivity and 
expansion) were chosen to demonstrate and validate the capabilities of 
the simulation chain. While these properties could also be obtained in 
nearly similar quality by less complex approaches, the simulation of 
thermal stresses is an example for an advanced information which is 

highly relevant for material design, but cannot be obtained by simpler 
approaches. A similar situation is expected for properties like electrical 
impedance, where percolation phenomena or thin conductive or 
isolating layers in the grain boundary control the macroscopic proper-
ties in a highly nonlinear way. The described simulation chain is capable 
of handling such phenomena explicitly. The implementation of these 
aspects and their application to other ceramic composites offers a huge 
potential for a considerable advancement in the design of new ceramic 
materials. 
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Fig. 11. (a) 95th percentile of frozen thermal stresses in the ZrO2 phase of ZA-composites for simulated RVEs of the test set (black) and predictions of the ML model 
based on the structural descriptors (blue). (b) Visualization of the influence of porosity on the (median) thermal stresses in the ZrO2 phase compared to nonporous 
RVEs (shown in black). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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