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ABSTRACT 

This paper presents a simulation-based approach to evaluate the 

mechanical strength of refractory materials by investigating the 

influence of the material’s structural composition on component 

failure. A neural network is trained and applied for image 

segmentation of 3D computed tomography images of refractory 

samples, enabling the identification of different material 

components. Structural properties, such as phase fractions, porosity, 

grain sizes, and their spatial distributions, are extracted from the 

segmented images. Finite element analyses are then conducted to 

assess the impact of mechanical loads on the material. The 

relationship between the identified structural properties and the 

probability of failure is evaluated, providing insights into material 

reliability. The approach is demonstrated using commercially 

available B80 and SP78 refractory materials. 

 

INTRODUCTION 
The drive towards climate neutrality necessitates the quick 

optimization of thermal processes in terms of energy and material 

efficiency. Refractories play a crucial role in achieving these goals 

not only by enhancing functionality and prolonging service life but 

also by improving performance with reduced wear, and increased 

strength. These improvements enable the construction of lighter and 

more efficient structures, further contributing to energy savings and 

sustainability. In the systematic development of sustainable 

refractory materials, simulation-based methods offer significant 

advantages by reducing time and experimental effort. Consequently, 

understanding the behavior of refractory materials under stress 

becomes paramount, as it provides essential insights for optimizing 

their performance and reliability in a wide range of applications. 

This paper aims to address the challenge of evaluating the 

mechanical strength of refractory materials by investigating the 

influence of material composition on component failure. By 

employing simulation-based techniques, it becomes possible to 

identify critical structural elements that contribute to component 

failure under various loads. The goal is to improve the reliability of 

new refractory materials by avoiding these critical elements. 
The paper is structured as follows. The methodology begins with the 

acquisition of computed tomography (CT) imagery of refractory 

samples, allowing for non-destructive characterization of the 

material's microstructure. Subsequently, an image segmentation 

approach using a neural network is employed to accurately identify 

and classify the main structural components of the refractory 

material.  

Following the segmentation, representative volume elements 

(RVEs) are extracted from the segmentation data and converted into 

meshes, enabling their utilization in finite element simulations. 

Finite element simulations are then conducted to analyze the stress 

increase within the RVEs when subjected to externally applied 

tensile strain, providing insights into the material's response to 

mechanical loading. Furthermore, macroscopic simulations of 

damage are performed using a 3-point bending simulation, allowing 

for an assessment of the material's behavior at a larger scale.  

 

NON-DESTRUCTIVE ANALYSIS OF REFRACTORY 

SAMPLES 
 

Computed Tomography imagery of B80 and SP78 refractories 

We demonstrate our method using commercially available 

refractories: a dense refractory brick made of Bauxite B80 and a 

dense high alumina brick made of synthetic magnesia spinels with a 

high clay content Alurath SP 78. Cylindrical samples of 5 mm height 

and 33 mm diameter have been cut from the as-received refractory 

bricks. The resolution of the CT images is 24µm. Figure 1a) shows 

a slice through the CT image of a B80 material. The image clearly 

shows the very inhomogeneous microstructural compositions of the 

refractory material. The total volume of the samples is about 4.3cm3 

which is sufficiently large to be representative of the material at 

hand. 

 

a)

 

b)

 
Fig. 1a): Computed tomography image of a sample of B80 

refractory material with a resolution of 1518 x 1483 x 276 voxels. 

A single slice of the image in the z-axis is displayed. b) 

Segmentation image as generated by nnUNet algorithm. Different 

colors indicate the distinct structural components of the material: 

pores are shown in red, course-grained inclusions in blue, fine-

grained matrix in green, background in black. 
 

Material analysis and 3D-image segmentation using 

convolutional neural networks 

From the CT images, three main structural components of the 

refractory samples can be distinguished: pores (dark regions), 

coarse-grained inclusions (distinct light regions), and a fine-grained 

matrix in between. The structural and chemical composition of the 

various components of the B80 refractory was determined through 

scanning electron microscope (SEM) and X-ray diffraction (XRD) 

analysis. The analysis revealed that the B80 material consists of 

61.8% Al2O3 (Corundum), 33.5% 3Al2O3-2SiO2 (Mullite), 4.6% 

Al2TiO5 (Tialite), with traces of other compounds. The material 

exhibits a complex structural composition, with distinct coarse 

grains made up primarily of Corundum with inclusions of either 

Mullite or Tialite, and varying degree of porosity. The matrix phase 

essentially shares the same composition but has a high degree of 

micro-porosity below the threshold resolution of the CT imaging. 
 

A convolutional neural network has been trained to automate the 

process of generating 3D-segmentations of the CT images, assigning 

to each voxel of the input image a corresponding class (background, 

pore, distinct coarse grain, or matrix). nnUNet has been chosen for 

its proven effectiveness in image segmentation tasks [1]. The 

algorithm was trained using manually generated training data from a 

single B80 image, consisting of a volume of 1152×1152×64 voxels. 

Despite the relatively small training volume, the implementation of 

data augmentation strategies in nnUNet ensured the generation of 

high-quality segmentations. Additionally, custom variations of the 

input data were incorporated to replicate common CT image 

artifacts, enhancing the algorithm's robustness to diverse imaging 

conditions. The resulting segmentation, showcased in Figure 1b), 

demonstrates the effectiveness of the approach in accurately 

identifying and classifying the structural components within the B80 

refractory material. The segmentation model was also applied to CT 



 

   

 

images of the SP78 material. Despite not being specifically trained 

on this material, the model demonstrates excellent segmentation 

performance, yielding accurate results. 

 

Analysis of structural composition 

The segmentation data is used to analyze the structural composition 

of refractory materials. We can derive various quantities from the 

segmentation results such as the volume fractions of grains, pores 

and matrix phase, the size and local distribution of inclusions, and 

the orientation of particles within the matrix phase. This information 

can be used to compare different samples and materials based on 

their microstructure. To illustrate this, Figure 2 shows the volume 

fractions, porosity and average grain size for the B80 and SP78 

samples, respectively. Note that the reported porosity only includes 

critical macroscopic pores that are detectable in the CT images and 

does not capture the much higher micro-porosity of > 10% according 

to density measurements. 

 

  
Fig. 2: Volume fractions of pores, distinct coarse grains and matrix 

for B80 and SP78 material. 

Homogenized mechanical properties of the main structural 

components of the B80 material were estimated using mixture rules, 

as listed in Table 1. to ensure the accurate modelling of the material's 

behaviour under stress in the simulations. 
 

Tab. 1: Material data used in microstructure simulations as 

estimated by mixture rules based on input data from the Material 

Property Database (MPDB) [2]. 

Component Young’s modulus [GPa] Poisson ratio 

Coarse grains 320 0.22 

Matrix phase 95 0.22 

 

FINITE-ELEMENT-BASED CHARACTERIZATION OF 

MATERIAL STRENGTH 
To quantify the failure probability of a given refractory material 

under external load we apply finite element simulations. The analysis 

is focused on the B80 material, but similar investigations could be 

conducted for SP78.  

We follow a multi-scale approach: on the micro-scale we calculate 

an approximate distribution of fracture stress using microstructure 

simulations based on representative volume elements (RVEs) 

extracted from the CT image segmentation data from above. The 

resulting distribution then serves as an input to a macro-scale 

simulation of a three-point bending experiment from which we can 

estimate the failure probability of the material. 

Mesh generation from volumetric data 

For the simulations on the micro-scale, we cut out numerous RVEs 

with a resolution of 125 x 125 x 125 voxels, each corresponding to a 

volume of 27 mm3, from the segmentation image of the refractory, 

cf. Figure 3. For each RVE, the volumetric data is converted to a 

mesh for use in finite element (FE) analysis using the CGAL library 

[3] and subsequent simulation in Ansys APDL. 

 
Fig. 3: Illustration of multiple representative volume elements cut 

from the segmented CT image of a B80 sample. 
 

Tensile strain simulations on micro-scale 

For each RVE, finite element simulations of linear elasticity were 

performed to determine the relative stress-increase factor compared 

to a defined external stress. In these simulations, a specified tensile 

strain was applied to the RVE, corresponding to a reference stress of 

1 MPa. If structural defects such as pores are present within the RVE, 

the surrounding material has to bear the additional stress, resulting 

in localized regions of elevated stress within the material. To 

quantify the stress increase, the 99th percentile of the volume-

weighted first principal stress in the matrix phase of each RVE was 

measured. This value was then used to compute a local stress 

increase factor by calculating the ratio between this percentile and 

the reference stress. In addition to the stress increase, an equivalent 

local stiffness is calculated for each RVE structure. By employing 

automated scripting, this procedure was iteratively applied to all 

RVEs, enabling the computation of a representative distribution of 

local stress increases across the material. Figure 4 shows the 

resulting distribution of stress increase from the simulation of 

approx. 400 RVEs of the B80 material. 

The distribution of local stress increase is mapped to a distribution 

of fracture stresses which is used in damage simulations as discussed 

in the following section. 

 

 
Fig. 4: Histogram of the stress increase of individual RVEs when 

applying an external tensile strain corresponding to a stress of 1 

MPa to opposite faces of the RVE. 
 

Macro-scale simulation of 3-point-bending 
The scatter of bending strength of the refractory material is evaluated 

using a virtual three-point bending test as illustrated in Figure 5. The 

bending strength is computed using finite element analysis (FEA) 

with the goal of comparing it with experiments and eventually using 

FEA directly to evaluate the failure distribution of complex 

structures. The model accounts for microscopic elasticity via 

coupling the effective properties of the microscopic representative 

volume elements with a macroscopic model of a three-point bending 

test. 

 



 

   

 

 

 
Fig. 5: Illustration of a finite element model of the three-point 

bending test. 

 

On the macroscopic scale, an isotropic damage model that influences 

the stress-strain relationship is implemented as a user programmable 

feature (UPF) in Ansys [4, 5, 6]. The stress-strain relation is 

represented as 

𝝈 = (1 − 𝐷) ℂ 𝜺 , 
where 𝝈 is the Cauchy stress tensor, 𝜺 denotes the strain tensor, ℂ 

represents the fourth-order elasticity tensor and 𝐷 ∈ [0,1] is the 

damage variable, 𝐷 =  0 corresponds to the undamaged state and 

𝐷 =  1 represents the fully damaged states. 

 

The damage evolution is implicitly expressed by the following 

equation: 

𝐷(𝜅) = 1 −
𝜅0

𝜅
𝑒

− 
𝜎Fℎe

𝐺F
 (𝜅−𝜅0)

, 

where κ is the maximum value of the equivalent strain experienced 

during the loading history, 𝜅0 represents the critical equivalent strain 

beyond which damage is initiated, ℎ𝑒 represents the characteristic 

length associated with the element size in the FEA, 𝜎𝐹 represents the 

fracture stress, and 𝐺𝐹 represents the fracture energy. A key point 

here is to use a modified equivalent von Mises strain from [5, 7] to 

evaluate κ. The modified version differentiates between tensile and 

compressive scenarios on the top and lower surfaces of the beam. 

This strain is given by the following expression: 

 

𝜅 =
𝑘 − 1

2𝑘(1 − 2𝑣)
𝐼1 +

1

2𝑘
√(

𝑘 − 1

1 − 2𝑣
𝐼1)

2

+
12𝑘

(1 + 𝑣)2 𝐽2 , 

where 𝜈 represents the Poisson ratio, 𝑘 represents the ratio of tensile 

to compressive strength, 𝐼1 represents the first invariant of the strain 

tensor, and 𝐽2 represents the second invariant of the deviatoric strain 

tensor. Moreover, the critical equivalent strain 𝜅0 is determined by 

𝜅0 = 𝜎F

(1 + 𝑣)(1 − 2𝑣)

𝐸(1 − 𝑣)
 . 
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Fig. 6): a, b) fracture stress distribution of two randomly chosen 

beam models, where fracture stress in each element is coming from 

the underlying RVE. c, d) the corresponding damage evolution 

pattern given identical loading conditions. 

 

To study the scatter of the bending strength and the effect of the 

microstructure on this scatter, various simulations are carried out 

with RVEs assigned in a random manner to each element of the beam 

model in order to reflect the inhomogeneous material/pore 

distribution. In other words, the material properties of each element 

come from a pool of RVEs resulting in beams with different fracture 

stress distributions, as seen in Figure 6a and Figure 6b. 

Examining the corresponding damage distribution and crack path in 

Figure 6c and Figure 6d, the effect of the fracture stress distribution 

on the failure pattern and consequently on the bending strength (15.2 

MPa and 14.9 MPa) can be seen. The fracture stress distribution 

around the center of the lower surface has a profound effect on the 

results as this is the location of the highest tensile stress. The 

simulation is run 45 times to allow statistical evaluation of the 

results. A Weibull distribution is fitted to the resulting bending 

stresses with a mean of 14.6 MPa and a standard deviation of 0.66 

MPa. The mean is in good agreement with experimentally observed 

values of 14.8 MPa from in-house data. However, the standard 

deviation is further away from the experimental value of 1.25 MPa. 

The difference may be due to a limited fracture stress distribution 

that does not fully reflect reality. Further investigation could, for 

example, directly calculate the fracture stress in each RVE by 

simulation, thus reducing the dependence on the available 

experimental data. 

 

CONCLUSIONS 

We have presented a simulation-based approach to evaluating the 

failure probability of refractories for mechanical loads based on their 

microstructure composition. Using this method, it becomes possible 

to rapidly compare different refractory materials based on data from 

CT imagery, eliminating the need for costly and time-consuming 

destructive testing. This will enable more rapid iterations when 

designing new refractory materials. In a future work, more detailed 

investigation on the scatter of bending strength will be carried out 

and then the resulting failure distribution obtained using FEA will be 

validated against an experimental setup. 
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