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Introduction

During the past 50 years, gas turbines 
were the most important driver for the de-
velopment of high-performance coatings. 
Since their efficiency increases with oper-
ating temperature, sophisticated metallic 
materials (e.g. nickel-based super-alloys) 
and Thermal Barrier Coatings (TBC) were 
developed since the 1990ies – allowing 
gas temperatures significantly higher than 
1000 °C. In the last decade, operating 
temperatures could be further increased 
by substituting metallic parts by Ceramic 
Matrix Composites (CMC) in the hottest 
parts of gas turbines [1]. CMC are ceramic 
materials with a reinforcement component, 
typically a ceramic fiber, which can be used 
at high thermal and mechanical loads [2]. 
Thereupon, the performance of the protec-
tive coatings had to be further improved 
by the development of systems providing a 
diffusion barrier against hot gas corrosion 
[3, 4]. These so called Environmental Barrier 
Coatings (EBC) have to be carefully adapted 
to the substrate material, which can be a 
metal, a monolithic ceramic or a CMC. Be-
sides stationary and aircraft gas turbines, a 
multitude of applications for EBC exist, e.g. 
in thermal and chemical processing and 
concentrated solar power technologies [2, 
5–7]. 
Since there is not a single coating material 
that can fulfill all the requirements, EBC 
systems are typically layered composites 

comprising at least a bond coat and a top 
coat. Current EBC systems for CMC com-
prise a silicon bond coat, a mullite-based 
intermediate layer and a rare earth silicate 
as top coat. For more details on the various 
EBC systems, the reader is referred to some 
excellent review papers [8–10]. There are 
five key requirements the EBC must fulfill 
to increase the lifetime of high temperature 
components:
(1) Control of thermal stresses 
   If the difference in coefficients of thermal 
expansion (CTE) between the different 
EBC layers and the substrate is too large, 
high stress levels arise in the CMC under 
thermal cycling [11, 12]. This can lead to 
cracking or delamination of the EBC sys-
tem. There is an important aspect that is 
often not considered: the stress states in 
the EBC are of dynamic nature [13], if tem-
perature gradients occur during fast tem-
perature changes. These temperature gra-
dients are controlled by the heat transfer 
properties of coatings and substrate and 
the design of the cooling system.  

(2) Phase stability of EBC materials
   Phase transformations are in most cases 
associated with volume and shape chang-
es of the material. This leads to the gen-
eration of stresses and can cause cracks, 
delamination or pore formation [14]. Thus, 
EBC materials should exhibit no phase 
transformations up to the application tem-
perature.

(3) Chemical compatibility between 
EBC layers and substrate
   There should be no “negative interactions” 
between the different EBC layers or the 
substrate material [9]. Examples for “neg-
ative interactions” are chemical reactions 
that lead to the formation of gases, pores, 
melts or the appearance of phases prone 
to corrosion. If this happens, there is a risk 
of failure of the EBC system. Moreover, the 
chemical compatibility is also an important 
factor to achieve good adhesion between 
the different EBC layers and the substrate.

(4) Environmental durability
   The different EBC materials need to show 
high durability under use conditions. In 
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The material properties of individual layers 
are calculated from the properties and the 
arrangement of the contributing phases by 
microstructure-property simulations. Using 
appropriate structure generators and Finite 
Element (FE) methods, a high precision is 
already obtained by these methods [22]. 
Moreover, methods for a top-down design 
of microstructures for preset properties 
have recently been developed [23]. So, the 
overall material properties of individual lay-
ers are predicted without the need of their 
synthesis in the lab. 
Next, the coating system and the substrate 
are simulated in a FE model. Thermal loads 
are applied, according to the operating re-
quirements, and the resulting stresses are 
calculated. If these stresses are unaccepta-
ble, other microstructures and compositions 
are considered, until a promising system 
has been identified. Fig. 2 shows as an ex-
ample the calculated thermal stresses in the 
bi-layer EBC described in the next section. 
Last but not least, processing of the coat-
ing system has to be designed. At this stage, 
cost issues are also considered. 
The state-of-the-art deposition technology 
for EBC coatings is Atmospheric Plasma 
Spraying (APS). With APS, the feedstock ma-
terial is injected through a plasma at high 
velocity, where it is (partially) molten to form 
droplets of micrometer size. The droplets are 
sprayed on the substrate, where they solid-
ify on the surface. With APS, a large variety 
of different material types can be depos-
ited with a high deposition rate. However, 

and the development of a specific EBC sys-
tem for SiC-based ceramics are described. 
Moreover, the possibilities offered by in-
novative characterization methods for the 
testing of EBC systems are illustrated. 

Strategies and tools for 
EBC development

As outlined in the previous section, EBC 
systems often consist of several layers, and 
the individual layers contain several solid 
phases and pores or cracks. A careful ma-
terial design is required to reduce the ex-
perimental effort in coating development. 
The principal steps are shown in Fig. 1. 
First, a selection of appropriate materials is 
required to ensure thermodynamic stability 
and mutual compatibility. Thermodynamic 
databases and CALPHAD methods provide 
valuable information on the respective 
phase diagrams and possible reactions [17]. 
However, data is often missing for rare ce-
ramic phases. Methods are developed to fill 
this gap by training Artificial Intelligence 
(AI) algorithms by correlating other easily 
available material data with existing ther-
modynamic data [18]. 
Other important properties of the selected 
phases are the coefficient of thermal expan-
sion, the elastic moduli (especially the in-
plane Young’s modulus) and the through-
plane thermal conductivity. These data can 
often be extracted from material databases 
[19]. Otherwise, they have to be measured 
at operating temperatures [20]. Material in-
dices are used to define selection criteria if 
conflicting attributes occur [21].   

most cases, high durability means a high 
resistance to corrosion and in some cases 
also abrasion and erosion. The specific re-
quirements depend a lot on the use case. 
In aero-engines for example, the harsh 
conditions are primarily due to the com-
bination of high temperature, high gas 
velocity, steam environment and the in-
gestion of dust particles during flight trig-
gering the occurrence of debris and highly 
corrosive melts [8, 9, 13, 15, 16].

(5) Thermal protection
   In many cases, EBC layers also provide 
a thermal barrier between environment 
and substrate, meaning they are simulta-
neously EBC and TBC systems. The latter 
requires a low through plane thermal con-
ductivity. However, there is a trade-off be-
tween small temperature gradients during 
thermal cycling, required for stress control 
(compare item 1), on the one hand and 
small thermal conductivity, required for 
thermal protection of the substrate, on the 
other hand. If low emissivity coatings are 
used as a top layer in an EBC/TBC system, 
both the temperature gradient and the 
heat flow are reduced and the conflict is 
mitigated.

In this paper, the authors describe strate-
gies and tools used at Fraunhofer-Center 
HTL to develop EBC systems efficiently. The 
paper starts with theoretical considerations 
to identify potential EBC materials that ful-
fill the above-mentioned requirements fol-
lowed by an experimental material screen-
ing. Then a slurry-based coating technology 

Fig. 1Fig. 1 Stages during EBC development including 
feedback loops and systematic tools

Fig. 2Fig. 2 Tensile stresses in the top coat of a 40 mm thick section of a 
SiC ceramic coated with a mullite bond coat (thickness: 0,24 mm) and a 
Y2O3–SiO2–Al2O3 top coat (thickness: 0,1 mm) during fast cooling (100 K/s). 
Maximum stresses occur after 9 s, the temperature distribution is shown as 
an insert
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Thereafter, the samples have been assessed 
in terms of dimensional stability, void for-
mation, change of mass and appearance 
and their interaction with the substrate ma-
terial. Based on this material screening, the 
authors selected 3Al2O3·2SiO2 (mullite) and 
Y2Si2O7 (yttrium disilicate) for further devel-
opment (see below).
Depending on the specific material system, 
densification by sintering sometimes needs 
quite high temperatures. In case of coatings, 
this is a problem if the sinter temperature 
exceeds the temperature limit of the sub-

process is illustrated by means of an EBC 
system for high temperature use of SiC ce-
ramics. 

Development of a bi-layer EBC 
for SiC ceramics 

Based on the preview steps, a quick screen-
ing of promising materials was done. Bulk 
samples of these materials were prepared in 
form of cylinders with a diameter of 10 mm. 
The samples were then exposed for some 
100 h to the flue gas atmosphere of a gas-
fired furnace at temperatures of 1400 °C. 

coatings are often porous or cracked, can 
contain residual amorphous material and 
control of the microstructure of the coat-
ings is limited. APS is a line-of-sight method 
with large overspray and difficulties to coat 
complex-shaped parts. Moreover, the equip-
ment and its operation are rather expensive. 
As an alternative to APS, we developed a 
slurry-based deposition technique for EBC. 
The slurries can be applied to the substrates 
by spraying, brushing or dipping, which also 
enables the coating of complexed-shaped 
parts (Fig. 3). At this stage, the coatings can 
be machined by simple tools, if necessary. 
After deposition, the coatings are sintered 
in a furnace to densify and to form a strong 
bonding to the substrate. 
The slurries can be designed to achieve a 
high-packing density of the coatings with-
out cracks. Thicknesses of up to 200 µm are 
possible in a single coating step. The slurry 
deposition technology also offers a large 
flexibility in the design and control of the 
microstructure of the coatings. This includes 
grain size and shape as well as the pore 
structure, if needed. Multiphase-compos-
ite coatings can be designed to tune the 
properties of the coatings. Moreover, the 
technology is rather simple, it is easy to 
implement, cost-efficient in operation and 
needs only low investments. During process 
development, Design of Experiments (DOE) 
is very helpful to reduce the experimental 
effort. In the next section, the development 

Fig. 3Fig. 3 Example of the slurry-based deposition technique based on spraying

Fig. 4Fig. 4 Light microscope image of the cross-section of mullite/YAS EBC: cross section 
(left), mullite-SSiC-interface (right,  bottom) and YAS-mullite-interface (right, top)  
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strate. On the other hand, low-sintering 
materials often show insufficient thermal 
stability for the use as EBC. 
Considering these aspects, different strate-
gies are feasible: sintering temperature can 
be decreased by using smaller particles or 
sintering additives. Liquid phase sintering or 
melt infiltration processes can be used as 
well to decrease sintering temperature. Yet, 
the authors followed another more prom-
ising approach to develop a well densified 
and thermally stable top coat keeping the 
processing temperature below a tolerable 
threshold. This approach is based on a sys-
tem which is easily densified in the amor-
phous state by a viscous sintering mecha-
nism and then crystallized to form stable 
crystalline phases. 
As material system, Y2O3–SiO2–Al2O3 (YAS) 
was identified fulfilling the requirements 

for the top coat of the EBC system as de-
scribed above. Based on the identified com-
positions, a glass frit from mixed powders 
was prepared. After milling of the glass 
frit, a slurry was formulated for the coat-
ing process. The applied coatings were heat 
treated using a cycle with two steps. First, 
at 1050 °C the coatings were densified to 
more than 95 % by viscous sintering. After 
densification at 1050 °C, the temperature 
was increased to a maximum of 1390 °C 
to crystallize the coating (step 2). Crystal-
lization resulted in the formation of a phase 
mixture of Y2Si2O7, Al2O3 and 3Al2O3·2SiO2 
as verified by X-ray diffraction.  Due to its 
favorable properties, the authors selected 
mullite as an interesting candidate for the 
bond coat of the present EBC system. 
Drawbacks of mullite as discussed in the 
literature [9, 24, 25] were considered and 

systematically mitigated by material and 
processing design, e.g., post-crystallization 
effects of mullite were avoided by using 
well-crystallized mullite powders and sin-
tering the coating after slurry deposition. 
Fig. 4 shows a cross-section of the mullite/
YAS–EBC on an SSiC substrate. The coatings 
were crack-free and good adhesion was ob-
served between the substrate and between 
the different layers. 
Fig. 5 shows SEM images of the YAS top 
coat applied on SSiC substrate with mullite 
bond coat. The YAS top coat exhibited good 
densification without larger pores or voids. 
Small pores could be detected. These pores 
were mainly closed. The YAS layer consisted 
of a phase mixture of Y2Si2O7, Al2O3 and 
3Al2O3·2SiO2, which were finely dispersed.

Testing of EBC systems 

The mullite/YAS EBC system described 
in the previous section was selected for 
application-relevant tests for its use in ae-
ro-engines. For that, it was applied on an 
SSiC substrate. The thermal cycling stability 
was studied in a Furnace Cycle Test (FCT) 
at MTU Aero Engines. The sample was cy-
cled 500 times between room temperature 
and 1135 °C. The EBC system successfully 
passed these tests. No cracks or spallation 
of the coating was detected. A mass change 
of only +0,03 % was observed. 
Moreover, the stability of the EBC system in 
hot gas environment was studied in a test 
rig at Fraunhofer IKTS. A temperature of 
1200 °C with a partial pressure of water va-
por of 0,15 respectively 0,08 atm were se-
lected as test conditions. After an exposure 
of 200 h, the sample protected by the EBC 
showed a mass gain of only 0,006 mass-% 

Fig. 5Fig. 5 SEM image of the YAS top coat on a mullite coated SSiC substrate: cross section (left) and top view (right)

Fig. 6Fig. 6 Specific weight change of a mullite/YAS coated SSiC sample in comparison to an 
uncoated SSiC reference sample in a hot gas corrosion test. The samples were tested at 
1200 °C with a gas velocity of 100 m/s
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and further developments on compatible 
top coats for various applications, amongst 
others special low-e coatings, are under 
way. 
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